Multiple Chromosomal Rearrangements Structured the Ancestral Vertebrate Hox-Bearing Protochromosomes
نویسندگان
چکیده
While the proposal that large-scale genome expansions occurred early in vertebrate evolution is widely accepted, the exact mechanisms of the expansion--such as a single or multiple rounds of whole genome duplication, bloc chromosome duplications, large-scale individual gene duplications, or some combination of these--is unclear. Gene families with a single invertebrate member but four vertebrate members, such as the Hox clusters, provided early support for Ohno's hypothesis that two rounds of genome duplication (the 2R-model) occurred in the stem lineage of extant vertebrates. However, despite extensive study, the duplication history of the Hox clusters has remained unclear, calling into question its usefulness in resolving the role of large-scale gene or genome duplications in early vertebrates. Here, we present a phylogenetic analysis of the vertebrate Hox clusters and several linked genes (the Hox "paralogon") and show that different phylogenies are obtained for Dlx and Col genes than for Hox and ErbB genes. We show that these results are robust to errors in phylogenetic inference and suggest that these competing phylogenies can be resolved if two chromosomal crossover events occurred in the ancestral vertebrate. These results resolve conflicting data on the order of Hox gene duplications and the role of genome duplication in vertebrate evolution and suggest that a period of genome reorganization occurred after genome duplications in early vertebrates.
منابع مشابه
Shared Subgenome Dominance Following Polyploidization Explains Grass Genome Evolutionary Plasticity from a Seven Protochromosome Ancestor with 16K Protogenes
Modern plant genomes are diploidized paleopolyploids. We revisited grass genome paleohistory in response to the diploidization process through a detailed investigation of the evolutionary fate of duplicated blocks. Ancestrally duplicated genes can be conserved, deleted, and shuffled, defining dominant (bias toward duplicate retention) and sensitive (bias toward duplicate erosion) chromosomal fr...
متن کاملUnraveling ancient segmental duplication events in human genome by phylogenetic analysis of multigene families residing on HOX-cluster paralogons.
BACKGROUND Vertebrate genomes contain extensive intra-genomic conserved synteny, which is the presence of similar set of genes on two or more chromosomes (paralogons). The existence of these paralogons has led to the proposal that vertebrate genome was structured by one or more rounds of ancient whole genome duplications (2R hypothesis). RESULTS The 2R hypothesis was tested by phylogenetic an...
متن کاملDifferential evolution of voltage-gated sodium channels in tetrapods and teleost fishes.
The voltage-gated sodium channel (SCN) alpha subunits are large proteins with central roles in the generation of action potentials. They consist of approximately 2,000 amino acids encoded by 24-27 exons. Previous evolutionary studies have been unable to reconcile the proposed gene duplication schemes with the species distribution and molecular phylogeny of the genes. We have carefully annotated...
متن کاملUnusual gene order and organization of the sea urchin hox cluster.
While the highly consistent gene order and axial colinear patterns of expression seem to be a feature of vertebrate hox gene clusters, this pattern may be less well conserved across the rest of the bilaterians. We report the first deuterostome instance of an intact hox cluster with a unique gene order where the paralog groups are not expressed in a sequential manner. The finished sequence from ...
متن کاملEvolution of voltage-gated Na(+) channels.
Voltage-gated Na(+) channels play important functional roles in the generation of electrical excitability in most vertebrate and invertebrate species. These channels are members of a superfamily that includes voltage-gated K(+), voltage-gated Ca(2+) and cyclic-nucleotide-gated channels. There are nine genes encoding voltage-gated Na(+) channels in mammals, with a tenth homologous gene that has ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- PLoS Genetics
دوره 5 شماره
صفحات -
تاریخ انتشار 2009